
THE HIGHLANDERS

#4499

2024

TECHNICAL BINDER

1

CONTENTS

ANALYSIS 3

ROBOT DESIGN 4

Drive Train..4

Intake...5

Shooter.. 6

ELEVATOR...7

AMP/TRAP MECH...8

PROGRAMMING 9

Autonomous.. 9

PATHING TOOL 10

Set Up.. 11

Design Requirements and Solutions..11

Labeled Diagrams and Descriptions...12

How to Use.. 22

Code Structure...28

Path Generation...30

Optimization.. 32

File Handling.. 34

Feedback/Visualization..36

2

ANALYSIS

This year, our game focus was to be quick and accurate. To achieve our goals and be adaptable

to any alliance, we needed to excel in all parts of the game such as shooting the note. Scoring in

the amp and trap, as well as climb. It was crucial for us to be able to meet teams at any level to

maximize points and utilize our alliance abilities to the fullest. Having a small robot was

necessary because the chain takes up a significant portion of the field. Being a small robot

enabled us to overcome this obstacle to increase cycle times. Being able to pick up notes

efficiently was also beneficial in improving our cycle time and gaining control of the note with

other robots around.

Priorities

1. Omnidirectional fast drive train

2. Be able to pick and shoot as quick as possible

3. Do well in all four aspects of the game

4. At least 4 piece auto

5. Balance on chain

6. Climb and score on the trap

7. Auto align and shoot into the speaker

8.

3

ROBOT DESIGN

DRIVE TRAIN

This years drive base is optimized for fast cycles and the ability to fit 2 robots on the chain

during endgame.

Being similar to last years chassis, the team was able to devote more time on other subsystems.

Chassis

● Built with 2"x1"x1/8" with standardized hole pattern for easy subsystem mounting

● 25"x29" frame

● 3 crossbeams for better structural integrity and to hold battery

Swerve

● Driven with 4 MK4i-L2.5 modules for maneuverability around the field

● Top speed of 19ft/s

Bumpers

● Obtaining robot frame dimensions in Cad.

● Chopping wood to fit the frame using a chop saw.

● Drilling holes in wood for attachment to frame.

4

● Using screws and tape pool noodles onto the bumper frame.

● Cutting team numbers and heat pressing onto cordura fabric.

● Stapled cordura fabric onto bumper frame.

● Attaching a bumper to the robot using screws and wingnuts.

INTAKE

We created an over the bumper intake and rigorously spent a long time perfecting its geometry
in CAD so that the intake would fit in frame without taking too much space away from other
mechanisms.

● Intake has 145-degree motion from down to up state
● Driven by 25H chain, with the gear reduction on the pivot being 30:1
● Rollers are carbon fiber tubes with silicone tubing around it
● Rollers are driven by a 24:11 reduction
● Pivots on a dead axle with a live axle around the dead axle to ensure smooth note

motion
o Intake plates are made of 2 sandwiched ¼ in UHMW plates

● Intake plates have wires run through them for protection
● Carbon fiber tubes have pulleys epoxied into them

o Pulleys have nuts inserted into them halfway through printing to secure them to
the plate

● Intake plates are held by nut strips on the swerve modules to keep it flush with the side

5

SHOOTER

Pivot Ratio 75:1 on Falcon 500 and max planetary(0-60 degrees rotation) 25H chain to rotate
Flywheel is a dead axle design. Split wheels to add spin on note 30/56 gear up run by 2 krakens
Horizontal feeder mechanism running on 3:1 ratio powered by one kraken to index note into
shooter.

● Many different iterations had led to the final design.
● CAD design sketch created for maximum results.
● CAD issues identified and resolved.
● Then the G-code course shifted to the real world process.
● Pivot between 0-60 degrees.
● Ability to shoot from the opponent's wing line.

6

ELEVATOR

The elevator is a single stage mechanism used to climb up on the chain and subsequently raise the arm
to score the trap.

● Passing point between intake and shooter

● ~23.5 reduction gearbox driving 1.25in spools from 2 Krakens

● Slanted 10 degrees from the base of the robot

● 16.5in extension length

● Spring hooks incorporated to lock onto chain while hanging

● 2 x 1 x 1/16 upright supported by crossbars

● Rope rigging rated for 300 lbs working load (per side)

● Limelights attached to be slanted at 25 degrees upward and 58 degrees outward

7

AMP/TRAP MECH

Lightweight pivoting used as a pass-off between the intake and shooter. It can be used to place

in the amp and trap.

● Applied mechanism to score on amp and trap.

● Developed iteration for achieving feat.

● Ensured the robot's space was adequate.

● Mounted on elevators

● 100:1 gear reduction from neo 550 on 1in round dead axle pivot

● Pass off between intake and shooter

● 3:1 reduction from kraken to power rollers

● Vertically mounted TOF (Time of Flight) sensor to accurately determine the position

of the note

● 1in od Silicon on 20mm carbon fiber rollers w/ 3d printed inserts on both sides.

8

PROGRAMMING

OVERVIEW

● Drivetrain - Using a field-centric swerve drive that uses wheel positions, a gyroscope, and vision

for odometry.

● Localization - Able to enhance robot control and field positioning using limelight 3’s. Ability to

automatically line up and range the shooter wherever we are on the field using the distance to

the speaker. Untagged April tags in camera view allow for automatically knowing where we are

on the field. Localization also helps with autonomous pathing and optimizations to make sure

the robot is in the right spot.

● Pre-programmed sequences to automatically set up mechanisms for specific actions.

● Note detection - Note picking in camera frame gives the robot an easy way to pick up notes. The

robot can follow notes which allows for the ability to pick up notes that are moved in

autonomous.

● Smart Dashboard - PI Indicators in match management shows disconnected motors. It can

identify on/off quick connections and potential problems before the match starts.

● Vision - Limelight 3’s with a neural network are used to detect notes and robots. Helps prevent

collisions with other robots and find where notes are. This allows it to track April tags for

localization. Lastly, the robot can find the distance to the speaker to range the shooter.

AUTONOMOUS

Our autonomous plan is as follows: during the autonomous period, we aim to score as many

notes as we can into the speaker for as many points as possible.

Autos:

● 5 piece that scores the 3 spike marks and 1 from the center line.

● 3 piece that scores 2 from the center line.

9

PATHING TOOL

10

SET UP

Install Python 3.10.2

Clone the “2023-Pathtool” repository on HighlandersFRC GitHub

Navigate inside of the 2023-Pathtool folder

In a command line, navigate to the desired parent folder and run “pip install -r

requirements.txt”

To launch the application run “python main.py”

DESIGN REQUIREMENTS AND SOLUTIONS

Before we started work on creating the new pathing tool, we set a couple of requirements that

the tool must meet:

● Be user friendly (intuitive controls/displays)

● Generate path equations with control over linear and angular position, velocity, and

acceleration at each key point in the path

● Upload and download these paths to the RoboRio onboard the robot

● Display useful feedback information to guide the creation of paths

● Be flexible as an application in order to make adjustments/expansions of the path tool

easier

To meet these requirements we implemented the following solutions:

● Get feedback from using the path tool

● Use quintic Catmull-Rom hermite splines to generate path equations

● Use paramiko, a python ssh library, to handle file transfer

● Implement feedback tools such as path animations, graphs and animations of recorded

odometry data, coloring the path to highlight when the path exceeds physical

capabilities (linear acceleration, linear velocity) of the robot, and others

● Use kivy, an open source Python GUI framework, to create a modular interface for the

path tool

11

https://www.python.org/downloads/release/python-3102/
https://github.com/HighlandersFRC/2023-PathingTool

LABELED DIAGRAMS AND DESCRIPTIONS

Section Function

Path Display Displays the current path, allow creation of
new key points, display animations and
recorded odometry.

Editor Edits parameters of individual key points,
displays information (action status, total
time) and provides access to popup menus
for file handling and the visualizer.

Key Points Menu Allows for easy selection of key points, and
allows key points to be switched in index.

12

Path Display

1 - Path Line Curve that shows what path the robot
should follow. Sections colored red
indicate a linear velocity higher than
the set physical limit. Sections colored
blue indicate linear acceleration higher
than the set physical limit. Sections
colored magenta indicate both of the
above. Sections colored black indicate
neither.

2 - Robot Indicator Shows where the edges of the robot
should be at that key point.

3 - Robot Angle Indicator Shows at what angle the robot should
be facing at that key point.

4 - Selected Point Indicator Indicates that that key point is
currently selected.

5 - Linear Velocity Indicator Indicates the magnitude and direction
of the robot’s linear velocity at that key

13

point.

Cursor Position and Measuring

1 - Position and Measurement Text Displays the position of the cursor (x,
y) in meters as well as the distance
from the cursor to the selected key
point, in meters.

2 - Distance being measured This is not shown in the actual tool, but
the line drawn in the diagram indicates
what distance is being measured

3 - Origin point This is the point at (0, 0). The tool uses
a right-handed coordinate system with
x as the horizontal axis and y as the
vertical axis, which means that x
increases as points move from left to
right, and y increases as points move
upward.

14

Key Points Menu

1 - Select Point Button Selects the key point of the same
index, useful for selecting key points
that are very close to each other.

2 - Reindex Point Button Switches the selected key point with
the point before or after it, controlled
with the buttons labeled “+” and “-”.
This is useful for inserting key points
into the middle of a path.

15

Editor

1 - Delta Time
Input

Type in and press
the button to set
delta time. Delta
time is the time in
seconds since the
previous key point.

7 - Load Button Opens the file manager
popup to load a saved
path.

2 - Angle Input Type in and press
the button to set
the angle. This is
the angle in degrees
of the selected key
point.

8 - Upload /
Download Button

Opens the file manager
popup to upload the
current path, upload all
saved paths including the
current one, or download
all paths on the RoboRIO.

3 - Angle Dial Press and drag the
dial manually to set
the angle of the
selected point.

9 - Full Animation
Button

Runs the entire
animation of the current
path.

4 - Clear Button Deletes all key
points.

10 - Parallel
Animations
Button

Runs the recording
animation in parallel with
the animation of the
current path. A recording
must be displayed on the
field in order to do this.

16

5 - Delete
Button

Deleted the
selected key point.

11 - Animation
From Point
Button

Runs the animation of
the current path starting
at the selected key point.
A key point must be
selected in order to do
this.

6 - Save Button Opens the file
manager popup to
save the current
path.

12 - Recording
Animation Button

Runs the animation of
the recording currently
displayed on the field. A
recording must be
displayed on the field in
order to do this.

17

1 - X Input Type in and press
the button to set
the x coordinate
of the selected
key point in
meters.

8 - Linear Velocity
Catmull-Rom
Button

Convert the linear
velocity equations of
the path into
Catmull-Rom splines.

2 - X Adjust Pressing the -X
button subtracts
0.025 meters from
the selected key
point’s x
coordinate, and
pressing +X adds
0.025 meters.

9 - Angular
Velocity Input

Type in and press the
button to set the
angular velocity of the
selected key point.

3 - Y Input Type in and press
the button to set
the y coordinate of
the selected key
point in meters.

10 - Angular
Velocity
Catmull-Rom
Button

Convert the angular
velocity equations of
the path into
Catmull-Rom splines.

4 - Y Adjust Pressing the -Y
button subtracts
0.025 meters from
the selected key
point’s y
coordinate, and
pressing +Y adds
0.025 meters.

11 - Catmull-Rom
All Button

Convert all linear and
angular equations of
the path into
Catmull-Rom splines.

18

5 - Velocity Theta
Input

Type in and press
the button to set
the velocity theta
of the selected key
point. The velocity
theta is the angle
at which the robot
will be moving at
the selected key
point.

12 - Visualizer
Button

Opens the visualizer
popup menu.

6 - Velocity Theta
Dial

Press and drag to
manually set the
velocity theta.

13 - Status Label Displays the status of
the last major path
operation. This
includes information
about uploading,
downloading, saving,
loading, displaying
recording on field,
updating recordings,
clearing recordings,
and clearing RoboRIO
recordings.

7 - Velocity
Magnitude Input

Type in and press
the button to set
the velocity
magnitude of the
selected key point.
The velocity
magnitude is the
linear velocity that
the robot will
have at the
selected point.

14 - Total Path
Time Label

Displays the total time
duration of the path
in seconds.

19

HOW TO USE

The 2023 Path Tool is capable of creating, refining, debugging, and transferring

autonomous path files. Here is a guide that will explain how best to take

advantage of the features it has to offer, shown with an example path.

Create a path

Left-click on the picture of the game field to create new key points. These key points are what

define any given path.

20

Edit key points

Use controls in the editor and key point menu to select each key point and edit its parameters

to your liking. In the example above, each point is rotated, the timings are adjusted, and the

whole path is optimized with the Catmull-Rom button.

Make sure it looks right

21

Run the full animation to double check that the path should run how you want it to.

Upload to RoboRio

Click the Upload/Download button and upload the path to the RoboRio (must be connected to

the robot).

22

Download recorded odometry

Click the Visualizer button, then click the Update button. This will download all

odometry recordings from the RoboRio (must be connected to the robot).

23

Compare odometry to path

After selecting the desired odometry recording file (the recording files are named

by the time the autonomous was run in the example, but they could be named

anything after being generated in robot code), click the Display on Field button.

This will draw the recorded odometry as a green path. With the recorded

odometry and the path file loaded, click the Run Both button to run the

animations of both at the same time. This is useful for visually comparing what

the robot recorded that it did and what it was supposed to do. Keep in mind that

the recorded odometry is not absolute truth; if the odometry accumulates error

during the autonomous, the recorded odometry may look like it followed a

different path than what the robot actually did.

24

Click the Visualizer button, then click the Graph button. A graph of the recorded x,

y, and theta odometry will pop up. If a path file is loaded (as shown in the example

above) , partially transparent lines representing the ideal x, y, and theta will be

graphed as well. This is useful for identifying drift in the path, and other

debugging such as tuning PIDs.

25

CODE STRUCTURE

The code for the 2023 Path Tool is written in Python 3.10.2 and uses Kivy 2.1.0 for the GUI

framework. Kivy implements a system of widget for constructing GUIs, which provides flexibility

and modularity.

This diagram shows the tree of ownership that organizes the different parts of the path tool.

The PathApp stores an instance of the Pathtool, which in turn stores instances of the Path,

Editor, and Points Menu widgets, which contain nested sub-widgets. For sub-widgets contained

in the Editor to control aspects of the Path widget, call-back commands are passed from the

Pathtool down to the sub-widget. The sub-widgets can then call that call-back and the Pathtool

will update the appropriate widget.

There are also two static method files, Convert and File Manager, that perform extra functions

for classes that import them. Convert contains methods for conversion between meters and

pixels on the image of the field, calculates distances, and more. The File Manager is used to

26

https://www.python.org/downloads/release/python-3102/
https://kivy.org/doc/stable/

read, write, and transfer files between the RoboRIO and the local system, as well as parsing save

files and recording files into usable forms.

PATH GENERATION

The 2023 Path Tool uses quintic Hermite splines to interpolate between key points in a path.

This has the benefit of smooth, continuous motion which reduces robot error when following

the path.

Position Equations

There are 3 separate piecewise position equations, which are for x, y, and theta respectively.

Velocity and Acceleration Equations

The first and second derivative equations of the position equations, which represent velocity

and acceleration as a function of time, are calculated to provide feedback on the path. This

feedback is useful for optimization such as reducing peak accelerations and velocities. The line

representing the path is also colored to show where the path is exceeding the kinematic

limitations (maximum velocity and acceleration) of the robot. However, the maximum velocity

and acceleration of the robot is not separated between x and y components. It is instead an

absolute magnitude that is independent of direction.

To generate an equation that gives linear velocity and acceleration as a function of time we

must take the first and second derivatives of the distance equation:

𝐷(𝑡) = 𝑥(𝑡)2 + 𝑦(𝑡)2

𝑉(𝑡) = 𝑑
𝑑𝑡 [𝐷(𝑡)] = 𝑥(𝑡)𝑥'(𝑡)+𝑦(𝑡)𝑦'(𝑡)

𝑥(𝑡)2+𝑦(𝑡)2

Rather than calculating these monstrous derivatives for each section of the piecewise equations

by substituting in the original x and y equations along with their first and second derivatives,

each of the original equations is evaluated at the given time and then substituted in.

x = float(np.polyval(xEquation, time))

27

y = float(np.polyval(yEquation, time))

vx = float(np.polyval(xVelEquation, time))

vy = float(np.polyval(yVelEquation, time))

ax = float(np.polyval(xAccelEquation, time))

ay = float(np.polyval(yAccelEquation, time))

return (x ** 3 * ax + x ** 2 * vy ** 2 + x ** 2 * y * ay + y ** 2 * x * ax - 2 * x * y * vx * vy + y ** 2

* vx ** 2 + y ** 3 * ay) / ((x ** 2 + y ** 2) * math.sqrt(x ** 2 + y ** 2))

Sampling these linear velocity and acceleration equations by time will give the magnitude of

linear velocity and linear acceleration respectively.

28

OPTIMIZATION

Catmull-Rom Splines

The linear and/or angular components of a path can optionally be converted into Catmull-Rom

splines, which helps to smooth out corners by optimizing the velocities of key points interior to

the path (key points that are not the first or last point). The math to calculate these velocities is

fairly simple, just set the velocity of the key point equal to the average velocity based on the key

points before and after it.

In the example above, the x-velocity at key point B could be determined with the following

equation:

𝑥'
𝐵

=
𝑥

𝐶
−𝑥

𝐴

𝑡
𝐶
−𝑡

𝐴

Angle Optimization

Since quintic Hermite splines interpolation angles between key points as a continuous quantity,

the direction of robot rotation between key points is often not optimal because the 180/-180

degree flipping point is not taken into account. To fix this, the angles of the key points are

optimized sequentially by determining which direction requires the least amount of rotation to

reach the next angle. If rotation in the positive direction is optimal, the angle of the next key

point will be an increase from the current angle, and if negative rotation is optimal, the next

29

angle will decrease. This ensures that the generated path equations will not cause the robot to

rotate more than 180 degrees between key points.

for i in range(1, len(self.key_points)):

p1 = self.key_points[i - 1]

p2 = self.key_points[i]

p2.angle %= 2 * math.pi

if p2.angle - p1.angle > math.pi:

p2.angle -= 2 * math.pi

elif p2.angle - p1.angle < -math.pi:

p2.angle += 2 * math.pi

30

FILE HANDLING

Path Save Files

Path files are saved both locally and remotely on the RoboRIO (under the /home/lvuser/deploy/

folder) in JSON files in the format shown below:

{

"meta_data":{

"path_name": str,

"sample_rate": float

},

"key_points": [

{

"index": int,

"time": float,

"delta_time": float,

"x": float,

"y": float,

"angle": float

"velocity_magnitude": float,

"velocity_theta": float

},

...

],

"sampled_points": [

{

"time": float,

"x": float,

"y": float,

"angle": float

},

...

]

}

31

There are 3 components of a save file: meta-data, key points, and sampled points.

The meta-data specifies the name of the path and the sample rate (in seconds) that

interpolated points are sampled at.

The key points are only included to allow paths to be downloaded and reconstructed by the

path tool.

The sampled points are interpolated points in a list for the robot code to follow (in our case with

a PID on the drivetrain).

It is important to note that the permissions of the /home/lvuser/deploy/ directory must be

changed to allow read and write privileges to all users. To do this, navigate to /home/lvuser/

and run chmod 777 lvuser/.

Recordings

The path tool also has the ability to download and parse CSV files containing recorded

odometry information from the robot during an autonomous. Recording files are located under

the /home/lvuser/deploy/recordings/ directory. The format for odometry recording files is

shown below:

time (float), x (float), y (float), theta (float)

32

FEEDBACK/VISUALIZATION

Odometry Graph

Upon selecting a recording file and pressing the graph button, a PyPlot window will pop up

displaying a graph of the odometry x, y, and theta over time. The translucent lines are plots of

the ideal x, y, and theta over time. These reference lines will only show up if a path is currently

loaded in the path tool. Having these reference curves is very useful for tuning drivetrain PID

values and identifying areas of the path prone to error.

33

Recording Animation

Recorded odometry can also be played back as an animation which is very nice for visualizing

what the robot thinks it did during the autonomous. Both the animation of the ideal path and

the recorded path animation can be played at the same time to help contrast.

The green robot marker represents the recorded odometry and the blue robot marker

represents the ideal path.

34

