

1

THE HIGHLANDERS

#4499

2023
TECHNICAL BINDER

2

CONTENTS

The Highlanders .. 1

ANALYSIS ... 3

ROBOT DESIGN .. 4

Drive Train ... 4

A-Frame ... 5

Arm .. 6

wrist ... 7

Intake ... 8

PROGRAMMING .. 9

Autonomous .. 9

PATHING TOOL .. 10

Set Up .. 11

Design Requirements and Solutions .. 11

Labeled Diagrams and Descriptions... 12

How to Use .. 21

Code Structure ... 27

Path Generation .. 29

Optimization .. 31

File Handling .. 33

Feedback/Visualization .. 35

3

ANALYSIS

This year, our game focus was control. To achieve our goals and be adaptable to any alliance,
we needed to create links on all three levels. It was crucial for us to be able to meet teams at
any level to maximize points and utilize our alliance abilities to the fullest. Having a robust
robot was necessary because the charging station takes up a significant portion of the field, and
being a robot enabled us to overcome this obstacle. Being able to pick up game elements at any
time was also beneficial in improving our cycle time and gaining control of the game elements
with other robots around. Therefore being able to pick up from as many sides as possible is
vital.

Priorities

1. Omnidirectional fast drive train
2. Pick all game elements in al orientations
3. reach all 3 levels
4. 2 Piece auto both sides, red and blue, leaves community
5. Balance on charge station
6. Climb with two alliance partners
7. Single button placement

4

ROBOT DESIGN

DRIVE TRAIN

This years drive base is optimized for fast cycles and the ability to fit 3 robots on the charging

station during endgame.

Being similar to last years chassis, the team was able to devote more time on other subsystems

Chassis

• Built with 2"x1"x1/8" with standardized hole pattern for easy subsystem mounting

• 25"x29" frame

• 2 crossbeams for better structural integrity

Swerve

• Driven with 4 MK4i-L2 modules for maneuverability around the field

• Top speed of 16.3ft/s

5

A-FRAME

This is the support structure for the arm, which has also been designed for the ability to hot-
swap the arm. With multiple support structures, it is robust enough to withstand impacts from
other robots and items on the field.

• Centered pivot point for symmetrical arm positions
• Mounted on chassis crossbeams with tube blocks
• Easily removable arm pivot for quick arm swaps
• Lights to indicate preferred game object to human player
• Carbon fiber tie rods for increased rigidity

6

ARM

The arm contains a weighted gearbox and weight savings to maintain balance across the robot.
It also has a rigid structure capable of reaching all levels and withstanding impacts from robots
on the field. We also made it capable of picking up both sides of the robot.

• 2 stage telescoping 3"x3", 2"x2", and 1"x1" tubes
• Cascading belt rigging ran inside the tubes
• Driven by 1 Falcon 500 with a 10:1 reduction for an extension speed of 0.5 seconds
• Ability to pick up and place game pieces on both sides

Rotation
• Driven by 2 Falcon 500 with a total reduction of 186.67:1
• Completes full range of motion under 1 second
• Uses worm gear to prevent back drive

7

WRIST

We designed this part to be compact in order to keep the weight at the end of the arm as light
as possible. By minimizing the weight, we can improve the arm's maneuverability and precision.
Additionally, reducing the weight at the end of the arm can help us avoid tipping over during
the game.

• Driven by 1 Neo 550 with a 280:1 reduction
• Rotates intake on dead axle
• Uses magnetic encoder for accurate positioning
• Uses 3D printed herring-bone gears to reduce backlash from wrist to encoder

8

INTAKE

The team chose a durable and versatile design, equipped with two 12-inch rollers on the intake
that can intake and place from both sides, allowing for quick and efficient collection and precise
depositing of game elements from any orientation on the field.

• Driven by 1 Falcon 500 with a 2:1 reduction
• Motor mounted on wrist to maintain motor position
• Roller surface speed of 13.09 ft/s
• Dead axle carbon fiber rollers with silicon rubber tubing to increase grip
• Amsteel rope to hold intaked cube

9

PROGRAMMING

AUTONOMOUS

Our autonomous plan is as follows: during the autonomous period, we aim to establish as much
of a link as possible. We also aim to get onto the charging station for RP (ranking points), and
we will try to balance if possible.

Autos:

- 2 pieces placed high on clear and cable chain side, then dock
- 1 piece placed high in center and dock

10

PATHING TOOL

11

SET UP

Install Python 3.10.2

Clone the “2023-Pathtool” repository on HighlandersFRC GitHub

Navigate inside of the 2023-Pathtool folder

In a command line, navigate to the desired parent folder and run “pip install -r
requirements.txt”

To launch the application run “python main.py”

DESIGN REQUIREMENTS AND SOLUTIONS

Before we started work on creating the new pathing tool, we set a couple of
requirements that the tool must meet:

● Be user friendly (intuitive controls/displays)
● Generate path equations with control over linear and angular position,

velocity, and acceleration at each key point in the path
● Upload and download these paths to the RoboRio onboard the robot
● Display useful feedback information to guide the creation of paths
● Be flexible as an application in order to make adjustments/expansions of

the path tool easier

To meet these requirements we implemented the following solutions:

● Get feedback from using the path tool
● Use quintic Catmull-Rom hermite splines to generate path equations
● Use paramiko, a python ssh library, to handle file transfer
● Implement feedback tools such as path animations, graphs and animations

of recorded odometry data, coloring the path to highlight when the path
exceeds physical capabilities (linear acceleration, linear velocity) of the
robot, and others

● Use kivy, an open source Python GUI framework, to create a modular
interface for the path tool

https://www.python.org/downloads/release/python-3102/
https://github.com/HighlandersFRC/2023-PathingTool

12

LABELED DIAGRAMS AND DESCRIPTIONS

Section Function

Path Display Displays the current path, allow creation of
new key points, display animations and
recorded odometry.

Editor Edits parameters of individual key points,
displays information (action status, total
time) and provides access to popup menus
for file handling and the visualizer.

Key Points Menu Allows for easy selection of key points, and
allows key points to be switched in index.

13

Path Display

14

1 - Path Line Curve that shows what path the robot
should follow. Sections colored red
indicate a linear velocity higher than
the set physical limit. Sections colored
blue indicate linear acceleration higher
than the set physical limit. Sections
colored magenta indicate both of the
above. Sections colored black indicate
neither.

2 - Robot Indicator Shows where the edges of the robot
should be at that key point.

3 - Robot Angle Indicator Shows at what angle the robot should
be facing at that key point.

4 - Selected Point Indicator Indicates that that key point is
currently selected.

5 - Linear Velocity Indicator Indicates the magnitude and direction
of the robot’s linear velocity at that
key point.

15

Cursor Position and Measuring

1 - Position and Measurement Text Displays the position of the cursor (x,
y) in meters as well as the distance
from the cursor to the selected key
point, in meters.

2 - Distance being measured This is not shown in the actual tool, but
the line drawn in the diagram indicates
what distance is being measured

3 - Origin point This is the point at (0, 0). The tool uses
a right-handed coordinate system with
x as the horizontal axis and y as the
vertical axis, which means that x
increases as points move from left to
right, and y increases as points move
upward.

16

Key Points Menu

1 - Select Point Button Selects the key point of the same
index, useful for selecting key points
that are very close to each other.

2 - Reindex Point Button Switches the selected key point with
the point before or after it, controlled
with the buttons labeled “+” and “-”.
This is useful for inserting key points
into the middle of a path.

Editor

17

1 - Delta Time
Input

Type in and press
the button to set
delta time. Delta
time is the time in
seconds since the
previous key
point.

7 - Load Button Opens the file manager
popup to load a saved
path.

2 - Angle Input Type in and press
the button to set
the angle. This is
the angle in
degrees of the
selected key
point.

8 - Upload /
Download Button

Opens the file manager
popup to upload the
current path, upload
all saved paths
including the current
one, or download all
paths on the RoboRIO.

3 - Angle Dial Press and drag the
dial manually to
set the angle of
the selected point.

9 - Full Animation
Button

Runs the entire
animation of the
current path.

4 - Clear Button Deletes all key
points.

10 - Parallel
Animations
Button

Runs the recording
animation in parallel
with the animation of
the current path. A
recording must be
displayed on the field
in order to do this.

18

5 - Delete Button Deleted the
selected key
point.

11 - Animation
From Point
Button

Runs the
animation of the
current path
starting at the
selected key
point. A key point
must be selected
in order to do this.

6 - Save Button Opens the file
manager popup to
save the current
path.

12 - Recording
Animation Button

Runs the
animation of the
recording
currently
displayed on the
field. A recording
must be displayed
on the field in
order to do this.

1 - X Input Type in and press
the button to set
the x coordinate
of the selected
key point in
meters.

8 - Linear Velocity
Catmull-Rom
Button

Convert the linear
velocity equations
of the path into
Catmull-Rom
splines.

19

2 - X Adjust Pressing the -X
button subtracts
0.025 meters from
the selected key
point’s x
coordinate, and
pressing +X adds
0.025 meters.

9 - Angular
Velocity Input

Type in and press
the button to set
the angular
velocity of the
selected key
point.

3 - Y Input Type in and press
the button to set
the y coordinate of
the selected key
point in meters.

10 - Angular
Velocity Catmull-
Rom Button

Convert the
angular velocity
equations of the
path into Catmull-
Rom splines.

4 - Y Adjust Pressing the -Y
button subtracts
0.025 meters from
the selected key
point’s y
coordinate, and
pressing +Y adds
0.025 meters.

11 - Catmull-Rom
All Button

Convert all linear
and angular
equations of the
path into Catmull-
Rom splines.

5 - Velocity Theta
Input

Type in and press
the button to set
the velocity theta
of the selected key
point. The velocity
theta is the angle
at which the robot
will be moving at
the selected key
point.

12 - Visualizer
Button

Opens the
visualizer popup
menu.

20

6 - Velocity Theta
Dial

Press and drag to
manually set the
velocity theta.

13 - Status Label Displays the status
of the last major
path operation.
This includes
information about
uploading,
downloading,
saving, loading,
displaying
recording on field,
updating
recordings,
clearing
recordings, and
clearing RoboRIO
recordings.

7 - Velocity
Magnitude Input

Type in and press
the button to set
the velocity
magnitude of the
selected key
point. The velocity
magnitude is the
linear velocity that
the robot will
have at the
selected point.

14 - Total Path
Time Label

Displays the total
time duration of
the path in
seconds.

21

HOW TO USE

The 2023 Path Tool is capable of creating, refining, debugging, and transferring
autonomous path files. Here is a guide that will explain how best to take
advantage of the features it has to offer, shown with an example path.

Create a path

Left-click on the picture of the game field to create new key points. These key
points are what define any given path.

22

Edit key points

Use controls in the editor and key point menu to select each key point and edit its
parameters to your liking. In the example above, each point is rotated, the timings
are adjusted, and the whole path is optimized with the Catmull-Rom button.

Make sure it looks right

23

Run the full animation to double check that the path should run how you want it
to.

Upload to RoboRio

Click the Upload/Download button and upload the path to the RoboRio (must be
connected to the robot).

24

Download recorded odometry

Click the Visualizer button, then click the Update button. This will download all
odometry recordings from the RoboRio (must be connected to the robot).

25

Compare odometry to path

After selecting the desired odometry recording file (the recording files are named
by the time the autonomous was run in the example, but they could be named
anything after being generated in robot code), click the Display on Field button.
This will draw the recorded odometry as a green path. With the recorded
odometry and the path file loaded, click the Run Both button to run the
animations of both at the same time. This is useful for visually comparing what
the robot recorded that it did and what it was supposed to do. Keep in mind that
the recorded odometry is not absolute truth; if the odometry accumulates error
during the autonomous, the recorded odometry may look like it followed a
different path than what the robot actually did.

26

Click the Visualizer button, then click the Graph button. A graph of the recorded x,
y, and theta odometry will pop up. If a path file is loaded (as shown in the
example above) , partially transparent lines representing the ideal x, y, and theta
will be graphed as well. This is useful for identifying drift in the path, and other
debugging such as tuning PIDs.

27

CODE STRUCTURE

The code for the 2023 Path Tool is written in Python 3.10.2 and uses Kivy 2.1.0 for
the GUI framework. Kivy implements a system of widget for constructing GUIs,
which provides flexibility and modularity.

This diagram shows the tree of ownership that organizes the different parts of the
path tool. The PathApp stores an instance of the Pathtool, which in turn stores
instances of the Path, Editor, and Points Menu widgets, which contain nested sub-
widgets. For sub-widgets contained in the Editor to control aspects of the Path
widget, call-back commands are passed from the Pathtool down to the sub-
widget. The sub-widgets can then call that call-back and the Pathtool will update
the appropriate widget.

https://www.python.org/downloads/release/python-3102/
https://kivy.org/doc/stable/

28

There are also two static method files, Convert and File Manager, that perform
extra functions for classes that import them. Convert contains methods for
conversion between meters and pixels on the image of the field, calculates
distances, and more. The File Manager is used to read, write, and transfer files
between the RoboRIO and the local system, as well as parsing save files and
recording files into usable forms.

29

PATH GENERATION

The 2023 Path Tool uses quintic Hermite splines to interpolate between key
points in a path. This has the benefit of smooth, continuous motion which reduces
robot error when following the path.

Position Equations

There are 3 separate piecewise position equations, which are for x, y, and theta
respectively.

Velocity and Acceleration Equations

The first and second derivative equations of the position equations, which
represent velocity and acceleration as a function of time, are calculated to
provide feedback on the path. This feedback is useful for optimization such as
reducing peak accelerations and velocities. The line representing the path is also
colored to show where the path is exceeding the kinematic limitations (maximum
velocity and acceleration) of the robot. However, the maximum velocity and
acceleration of the robot is not separated between x and y components. It is
instead an absolute magnitude that is independent of direction.

30

To generate an equation that gives linear velocity and acceleration as a function
of time we must take the first and second derivatives of the distance equation:

𝐷𝐷(𝑡𝑡) = �𝑥𝑥(𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡)2

𝑉𝑉(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡 [𝐷𝐷(𝑡𝑡)] =

𝑥𝑥(𝑡𝑡)𝑥𝑥′(𝑡𝑡) + 𝑦𝑦(𝑡𝑡)𝑦𝑦′(𝑡𝑡)

�𝑥𝑥(𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡)2

Rather than calculating these monstrous derivatives for each section of the
piecewise equations by substituting in the original x and y equations along with
their first and second derivatives, each of the original equations is evaluated at
the given time and then substituted in.

x = float(np.polyval(xEquation, time))

y = float(np.polyval(yEquation, time))

vx = float(np.polyval(xVelEquation, time))

vy = float(np.polyval(yVelEquation, time))

ax = float(np.polyval(xAccelEquation, time))

ay = float(np.polyval(yAccelEquation, time))

return (x ** 3 * ax + x ** 2 * vy ** 2 + x ** 2 * y * ay + y ** 2 * x * ax - 2 * x * y * vx * vy + y ** 2 * vx ** 2 + y

** 3 * ay) / ((x ** 2 + y ** 2) * math.sqrt(x ** 2 + y ** 2))

Sampling these linear velocity and acceleration equations by time will give the
magnitude of linear velocity and linear acceleration respectively.

31

OPTIMIZATION

Catmull-Rom Splines

The linear and/or angular components of a path can optionally be converted into
Catmull-Rom splines, which helps to smooth out corners by optimizing the
velocities of key points interior to the path (key points that are not the first or last
point). The math to calculate these velocities is fairly simple, just set the velocity
of the key point equal to the average velocity based on the key points before and
after it.

In the example above, the x-velocity at key point B could be determined with the
following equation:

𝑥𝑥′𝐵𝐵 =
𝑥𝑥𝐶𝐶 − 𝑥𝑥𝐴𝐴
𝑡𝑡𝐶𝐶 − 𝑡𝑡𝐴𝐴

Angle Optimization

Since quintic Hermite splines interpolation angles between key points as a
continuous quantity, the direction of robot rotation between key points is often
not optimal because the 180/-180 degree flipping point is not taken into account.

A

B

C

Y

X

32

To fix this, the angles of the key points are optimized sequentially by determining
which direction requires the least amount of rotation to reach the next angle. If
rotation in the positive direction is optimal, the angle of the next key point will be
an increase from the current angle, and if negative rotation is optimal, the next
angle will decrease. This ensures that the generated path equations will not cause
the robot to rotate more than 180 degrees between key points.

for i in range(1, len(self.key_points)):

 p1 = self.key_points[i - 1]

 p2 = self.key_points[i]

 p2.angle %= 2 * math.pi

 if p2.angle - p1.angle > math.pi:

 p2.angle -= 2 * math.pi

 elif p2.angle - p1.angle < -math.pi:

 p2.angle += 2 * math.pi

33

FILE HANDLING

Path Save Files

Path files are saved both locally and remotely on the RoboRIO (under the
/home/lvuser/deploy/ folder) in JSON files in the format shown below:

{
 "meta_data":{
 "path_name": str,
 "sample_rate": float
 },
 "key_points": [
 {
 "index": int,
 "time": float,
 "delta_time": float,
 "x": float,
 "y": float,
 "angle": float
 "velocity_magnitude": float,
 "velocity_theta": float
 },
 ...
],
 "sampled_points": [
 {
 "time": float,
 "x": float,
 "y": float,
 "angle": float
 },
 ...
]
}

34

There are 3 components of a save file: meta-data, key points, and sampled points.

The meta-data specifies the name of the path and the sample rate (in seconds)
that interpolated points are sampled at.

The key points are only included to allow paths to be downloaded and
reconstructed by the path tool.

The sampled points are interpolated points in a list for the robot code to follow
(in our case with a PID on the drivetrain).

It is important to note that the permissions of the /home/lvuser/deploy/ directory
must be changed to allow read and write privileges to all users. To do this,
navigate to /home/lvuser/ and run chmod 777 lvuser/.

Recordings

The path tool also has the ability to download and parse CSV files containing
recorded odometry information from the robot during an autonomous. Recording
files are located under the /home/lvuser/deploy/recordings/ directory. The
format for odometry recording files is shown below:

time (float), x (float), y (float), theta (float)

35

FEEDBACK/VISUALIZATION

Odometry Graph

Upon selecting a recording file and pressing the graph button, a PyPlot window
will pop up displaying a graph of the odometry x, y, and theta over time. The
translucent lines are plots of the ideal x, y, and theta over time. These reference
lines will only show up if a path is currently loaded in the path tool. Having these
reference curves is very useful for tuning drivetrain PID values and identifying
areas of the path prone to error.

36

Recording Animation

Recorded odometry can also be played back as an animation which is very nice for
visualizing what the robot thinks it did during the autonomous. Both the
animation of the ideal path and the recorded path animation can be played at the
same time to help contrast.

The green robot marker represents the recorded odometry and the blue robot
marker represents the ideal path.

	THE HIGHLANDERS
	#4499
	2023
	TECHNICAL BINDER
	ANALYSIS
	ROBOT DESIGN
	Drive Train
	A-Frame
	Arm
	wrist
	Intake

	PROGRAMMING
	Autonomous

	PATHING TOOL
	Set Up
	Design Requirements and Solutions
	Labeled Diagrams and Descriptions
	How to Use
	Code Structure
	Path Generation
	Optimization
	File Handling
	Feedback/Visualization

